Diagnosis of Ovarian Cancer Using Decision Tree Classification of Mass Spectral Data

نویسندگان

  • Antonia Vlahou
  • John O. Schorge
  • Betsy W. Gregory
  • Robert L. Coleman
چکیده

Recent reports from our laboratory and others support the SELDI ProteinChip technology as a potential clinical diagnostic tool when combined with $n$ -dimensional analyses algorithms. The objective of this study was to determine if the commercially available classification algorithm biomarker patterns software (BPS), which is based on a classification and regression tree (CART), would be effective in discriminating ovarian cancer from benign diseases and healthy controls. Serum protein mass spectrum profiles from 139 patients with either ovarian cancer, benign pelvic diseases, or healthy women were analyzed using the BPS software. A decision tree, using five protein peaks resulted in an accuracy of 81.5% in the cross-validation analysis and 80%in a blinded set of samples in differentiating the ovarian cancer from the control groups. The potential, advantages, and drawbacks of the BPS system as a bioinformatic tool for the analysis of the SELDI high-dimensional proteomic data are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...

متن کامل

مدل سازی تصمیم برای تشخیص و غربالگری سرطان اپی تلیال تخمدان

Background and Aim: The Ovarian epithelial cancer is one of the most deadly types of cancers in women.Thus, the purpose of this study was to investigate the most effective factors in predicting and detecting Ovarian cancer in the form of a decision tree to facilitate the Ovarian cancer diagnosis. Materials and Methods: The present study was a descriptive-developmental study. The main research ...

متن کامل

Applying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study

Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...

متن کامل

Applying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study

Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...

متن کامل

Application of Different Methods of Decision Tree Algorithm for Mapping Rangeland Using Satellite Imagery (Case Study: Doviraj Catchment in Ilam Province)

Using satellite imagery for the study of Earth's resources is attended by manyresearchers. In fact, the various phenomena have different spectral response inelectromagnetic radiation. One major application of satellite data is the classification ofland cover. In recent years, a number of classification algorithms have been developed forclassification of remote sensing data. One of the most nota...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Biomedicine and Biotechnology

دوره 2003  شماره 

صفحات  -

تاریخ انتشار 2003